
Quantum Advantage in Classical Communications via Belief-Propagation with Quantum Messages
Narayanan Rengaswamy∗, Kaushik Seshadreesan†, Saikat Guha†, and Henry D. Pfister∗

∗Rhodes Information Initiative at Duke (iiD), Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
†College of Optical Sciences, University of Arizona, Tucson, AZ, USA

Motivation and Contributions

• Communication: Need to distinguish messages reliably at the receiver.

• We consider classical communication over classical-quantum (CQ) channels, e.g.,
deep-space optical communications (BPSK modulated pure-loss optical channel).

• In general, need a collective measurement on all received qubits to perform
minimum probability of error measurement. But this is hard to realize in practice.

• Belief-propagation (BP) is a classical algorithm that can be used to efficiently
decode classical codes over classical channels. It passes probabilities as messages
over the code’s factor graph to compute posterior marginal distributions.

• Renes [1] proposed a BP algorithm that passes quantum messages to decode
classical codes over the pure-state CQ channel, e.g., deep-space optical comm.

• We analyze this algorithm for an example 5-bit code and show that it is actually
quantum optimal, i.e., it achieves the minimum probability of error for distinguishing
the codewords after transmission over the pure-state channel.
• Better than current receivers in deep-space optical communications that measure each qubit and

post-process the result classically. This provides a significant quantum advantage!

• We provide a full circuit decomposition for the algorithm into standard single-qubit,
two-qubit and Toffoli gates. The BPQM circuit is very structured.

Near-Term Quantum Advantage!

Our results indicate a potentially near-term communication application for quantum
technologies that does not require a universal fault-tolerant quantum computer!

Factor Graphs (FGs) for Linear Codes

• FG: A graphical representation for a joint distribution f (x1, x2, . . . , xn) over n
variables; bipartite with (circle) nodes for variables, (square) nodes for factors of f .

• If f can be factored, then the factor graph exhibits some (computational) structure.

• [n, k, d] Linear Code: C := {x ∈ Fn2 | H · xT ≡ 0T (mod 2)}, where H ∈ F(n−k)×n
2

is a parity-check (PC) matrix for C. Minimum Hamming weight of any x ∈ C is d.
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Figure 1: FG and PC matrix for an example [5, 3, 2] code C. The FG is a tree in this case.

• Classical channel: W (y|x), where x ∈ {0, 1} and y ∈ Y , some output alphabet.
W (y|x) is the transition probability that y is received upon transmitting x.

Belief-Propagation (BP) Algorithm

• Passes messages through the (bipartite) factor graph to efficiently compute the
bitwise posterior marginal distributions. For an introduction to BP, see [2].

• Problem: Transmit x ∈ C, receive y ∈ Yn, produce an estimate x̂ of the transmitted
codeword that minimizes the average probability of error.

• Block Maximum-a-posteriori (MAP): Calculate the posterior distribution

p(x|y) =
p(y|x) · p(x)

∑
x∈{0,1}5 p(y|x) · p(x)

∝ W (y1|x1) · [I(x1 ⊕ x2 ⊕ x3 = 0)W (y2|x2)W (y3|x3)]
· [I(x1 ⊕ x4 ⊕ x5 = 0)W (y4|x4)W (y5|x5)] .

Then choose the vector that maximizes the posterior as the Block-MAP estimate:
x̂MAP := argmax

x∈{0,1}5
p(x|y).

• This is optimal but computationally expensive; need to calculate p(x|y) for 2k x’s.

• Bit-MAP: Marginalize the posterior and estimate the vector x̂ bitwise, e.g., for x̂1,

x̂1
MAP = argmax

x1∈{0,1}
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• BP: Implements Bit-MAP efficiently by using distributivity of addition over
multiplication. First, at nodes c1 and c2, compute the “local beliefs” (for x1) in the
two square brackets simultaneously. Then multiply these with the direct “belief”
from the channel, W (y1|x1), at node x1. Finally, find the value of x1 that maximizes
the result. When the FG is not a tree, this approximates Bit-MAP (efficiently).

BP performs local inference matched to induced channels

• Variable Node (VN) Channel Convolution:
[W ~W ′](y, z|x) = W (y|x) ·W ′(z|x, y) = W (y|x) ·W ′(z|x).

• Factor Node (FN) Channel Convolution:

[W �W ′](y, z|x) = 1
2
W (y|x) ·W ′(z|0) + 1

2
W (y|x⊕ 1) ·W ′(z|1).

Communication over the Pure-State CQ Channel

• Pure-state channel: Defined for classical inputs x ≡ |x〉 〈x| , x ∈ {0, 1}, as
W (x) := 〈x|0〉 · |θ〉 〈θ| + 〈x|1〉 · |−θ〉 〈−θ| = |(−1)xθ〉 〈(−1)xθ| ,

|±θ〉 := cos θ
2
|0〉 ± sin θ

2
|1〉 . (cos θ = e−2N , N = mean photon number per mode)

• Distinguishing Quantum States: Two quantum states |ψ1〉 , |ψ2〉 can be perfectly distinguished iff they are
orthogonal: 〈ψ1|ψ2〉 = 0. Otherwise, the minimum probability of error in distinguishing them is given by

P ∗e = 1
2

[
1−

√
1− |〈ψ1|ψ2〉|2

]
= 1

2

[
1−
√

1− cos2 θ
]

= 1− sin θ
2

(|ψ1〉 := |θ〉 , |ψ2〉 := |−θ〉),

which is achieved by the Helstrom measurement [3], i.e., measuring in the X basis in this case.

• Dolinar Receiver: Performs qubit-wise Helstrom measurements, followed by classical post-processing (e.g.,
MAP). Quantum optimal receiver performs better via collective measurements on all qubits. This
measurement is given by Yuen-Kennedy-Lax (YKL) conditions, but hard to find a structured circuit.

Belief-Propagation with Quantum Messages (BPQM)

• Renes [1] generalized BP channel convolutions to CQ channels W (x) ≡ W (|x〉 〈x|), x ∈ {0, 1}:
VN Convolution : [W ~W ′](x) := W (x)⊗W ′(x),

FN Convolution : [W �W ′](x) := 1
2
W (x)⊗W ′(0) + 1

2
W (x⊕ 1)⊗W ′(1).

• Local inference strategy: Perform a unitary U~(θ, θ′) at a VN, and CXW→W ′ at a FN; these satisfy
U~(θ, θ′) (|±θ〉 ⊗ |±θ′〉) =

∣∣±θ~
〉
⊗ |0〉 , CX ([W �W ′](x))CX† =

∑

j∈{0,1}
pj
∣∣∣±θ�

j

〉〈
±θ�

j

∣∣∣⊗ |j〉 〈j| .

• Messages: At VN, pass qubit from 1st system; at FN, measure 2nd system and pass resulting qubit
from 1st system. But we need to perform tasks coherently and not discard any qubits along the way.

Quantum Optimality of BPQM for the 5-Bit Code
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Figure 2: The full BPQM circuit for decoding all bits of the example 5-bit code C (on the left); Measurement mi = (−1)x̂i.

(a) ρ±,a = |±θ〉 〈±θ|1 ⊗ [W �W ](x1)23 ⊗ [W �W ](x1)45 = |±θ〉 〈±θ| ⊗ 1
4
∑

c∈C : c1=x1

⊗5
i=2W (ci).

(b) ρ±,b = |±θ〉 〈±θ|1 ⊗
[∑

j∈{0,1} pj
∣∣∣±θ�

j

〉〈
±θ�

j

∣∣∣
2
⊗ |j〉 〈j|3

]
⊗
[∑

k∈{0,1} pk
∣∣±θ�

k

〉 〈
±θ�

k

∣∣
4 ⊗ |k〉 〈k|5

]
.

(c) ρ±,c = |±θ〉 〈±θ|1 ⊗
∑

j,k∈{0,1}2 pjpk
∣∣∣±θ�

j

〉〈
±θ�

j

∣∣∣
2
⊗
∣∣±θ�

k

〉 〈
±θ�

k

∣∣
3 ⊗ |j〉 〈j|4 ⊗ |k〉 〈k|5.

(d) σ± =
∑

j,k∈{0,1}2 pjpk |±θ〉 〈±θ|1 ⊗
∣∣∣±θ~jk

〉〈
±θ~jk

∣∣∣
2
⊗ |0〉 〈0|3 ⊗ |jk〉 〈jk|45, where the applied unitary

operation is U :=
∑

j,k∈{0,1}2 U~(θ�
j , θ

�
k )23 ⊗ |jk〉 〈jk|45 and cos θ~jk := cos θ�

j cos θ�
k .

(e) Ψ± =
∑

j,k∈{0,1}2 pjpk
∣∣∣±ϕ~

jk

〉〈
±ϕ~

jk

∣∣∣
1
⊗ |0〉 〈0|2 ⊗ |0〉 〈0|3 ⊗ |jk〉 〈jk|45, where the applied unitary

operation is V :=
∑

j,k∈{0,1}2 U~(θ, θ~jk)12 ⊗ |jk〉 〈jk|45 and cosϕ~
jk := cos θ cos θ~jk.

• Optimality for x1: Follows from unitary invariance of Helstrom success probability 1
2 + 1

4 ‖ρ+,a − ρ−,a‖1.

• Optimality for other bits and for full codeword: See [4] for detailed analysis and circuit decomposition.

• Questions: Goal of BPQM still unclear. Does optimality hold for a general code family (e.g., tree FGs)?
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