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Motivation and Contribution Stabilizer Codes and Logical Pauli Operators
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. Fault-tolerance: Given a quantum error-correcting code (QECC), if a quantum operation k-dimensional Stabilizer commutatlze sz;)group S C . W generated by linearly independent Hermitian operators
E(a;,b;) =% D(aj,bj), j=1,...,k.

is performed on an encoded block of qubits, and a single component of the circuit fails, then the J
number of errors in the output state should be within the error_correcting Capacity of the code. g [[m, m — k‘, d]] Stabilizer Code: The Qm_k dimensional subspace V(S> jointly fixed by all elements of the stabilizer S,

: AN N . _
= Part of the goal: For a chosen code, determine the circuits that realize non-trivial operations on e, VI(5) = {W> cChiglp) =) vge S}'
the logical qubits. These physical circuits are called the logical operators for the code. - The [6,4,2] CSS Code: S £ (g* £ X®0 = F(111111,000000), g4 = Z®0 = E(000000, 111111)).

- CSS Construction: Let C be the [6, 5, 2] single-parity check code (m = 6). The dual C C C is the [6, 1, 6] repetition

= Many works have concentrated on constructing codes with good properties and also on optimizing 1
code with generator G, = Hp = 1 11111]. Two possible generator matrices for the coset space C/C— are:

a given circuit for complexity or fault-tolerance, with respect to a chosen gate set.
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= We provide a systematic and efficient algorithm for synthesizing logical Clifford operators on L0000 iy 010001 h,l
1 . iy . x _ (101000 _ [ho z _ (001001} _ [hy
stabilizer codes. We also reveal the exact degeneracy in realizing these encoded operations. Our GC/CL Loo1o0o0l = 1n or GC/Ci 000101l = A7 (5)
enumeration of all valid circuits can be useful in a compiler choosing codes even dynamically. 3 3
100010 iy 000011} n
unreliable circuit - So if we have a 4-qubit logical state |z); then the CSS code will encode this into the physical state
/ ! 1 4
. . . L
initial ) arbitrary logical operation g™ ) desired ) = v+ ci> = : S et Ggf/CQ v 37 e+ ijhj> . (6)
logical — /L /LT final \/ 1C~] cect cecl|  j=1
state Need to state - For the 6,4, 2] CSS code the logical Pauli operators are: )_(j = D(h;,0) = X1X,, Zj = D(0, h;) = Z41Z5.
translate _ _ _ .
QECC for given QECC Synthesis of Logical Clifford Operators for Stabilizer Codes
encode QECC decode
- Conditions on g: g)_(ng — hif gLXjL(gL)Jr — hl ¢ HWoy—y and §Zj§T = hif gLZjL(gL)]L = HWo .
" relevant physical operation g > - Synthesizing gL = CZlLQ for the [6,4, 2] CSS code: Find physical operator g = CZ1 that normalizes S and satisfies
' / ' (Xlzz if 7 =1,
7wl o) o v s 2N e iR N A
We do this for logical Clifford operations on stabilizer QECCs (21280215 = S )Z;XQ 1?7 ; ?’ 2’ (21220200 = 25V 5 = 1,2,3,4, (7)
Nl tJ )

Our algorithms, along with more utilities, are available open-source at: - Using the symplectic representation translate these into constraints on the desired symplectic matrix for CZ1:
https://github.com/nrenga/symplectic-arxivi8a S - B 7 . | | |
CZ19X1CL1y = X129 = X1 = X1X> I X X075 7 <5 110000, OOOOOO_Fﬁ12 = 110000, 001001}
L L _ 7 | | | |
CZlQXQCZ—{Q = /Z1Xo = Xo=X1X;3 Cﬂ X1X32975 (7:’¢> 101000, OOOOOO_Fﬁ12 = 101000, 010001}
Logical Clifford Our _ All physical circuits g ' o '
Operator g~ Algorithm that realize g¥ & fix S CZ1o g¥ CZ1, = g¥ = X®6 28 x®6 _ x x5 ... Xg L2 (111111, 000000 Fey = [111111,000000
CZ g° ﬁb _ g% o 79082 g06 _ g g g7 2R 000000, 111111} Fez = 000000, 111111].
Stabilizer S Logical Pauli§ X;, Z; One possible solution [0 0 0 0 0 0
(defines the code) (Got97, Wil09) 00 1 0 0 1 )
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Figure 1: (top) Problem of Encoded Computation. (bottom) An abstract representation of our contribution. = Fﬁlg — 0 Ig , B = 00 0 0 0 0 — 3 i I
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Heisenberg-Weyl Group and Symplectic Vector Spaces 0 1 1 0 0 0
- T - -
CZio= diag (LUBU )Z6 (/
= The single qubit Pauli or Heisenberg-Weyl operators are given by Not captured in Fr  — added to fix signs
- 0 1 . 0 0 _ = (CZ36C7ZosCZios Ls CZ12
I 2 [0 1], X 2 [1 o]’ 72 [0 1] Y A,.X7 = [ OZ] 21 (1)
- ‘ = We solve such symplectic systems of linear equations using binary symplectic transvections.
- Bit-flip (X |v) = |v @ 1)) and phase-flip (Z |v) = (—1)" |v)) anti-commute: X7 = —ZX. = Definition: Given a row vector h € F%m the corresponding symplectic transvection Zj, F%m — F%m is defined as
m-qubit Pauli (or) Heisenberg-Weyl Group HW (N = 2"): Operators " D(a, b), where Zp(z) 2z + (x, h)sh & F), 2 Dy, + Qh' h € Sp(2m, Fy). (8)
D(a,b) 2 X1z @ Xx®27%2 ... @ X ™70 ¢ Ugn, (2)

Our Generic Algorithm

a=(ai,...,am),b=(b1,...,by) € FI', k € {0,1,2,3} and Uy is the unitary group.
©® Determine the target g by specifying its action on X;, Z;: ¢X;g' = X!, gZ;g' = Z!. Add conditions to normalize or centralize S.

. _ b’ _ : e ’
+ Bxample: D(a,0) |v) = (=1)* [v+a) = D(11010,10110) [10101) = |01111). ® Using the maps 7, ¢, transform these relations into linear equations on Fj; € Sp(2m,[Fy), i.e., v(X;)F = v(X]),v(Z;))F = v(Z]). Add

(XZRXQ®ZRQXZRI1)[10101)=XZ|HX|0)® Z|1)® XZ|0)® Iy|1) =|01111). the conditions for normalizing the stabilizer S, i.e., 7(S)F = v(5').
= Symplectic Inner Product: For row vectors [CL, b]) [a’7 b’] c F%m, define ® Find the feasible symplectic solution set JF; using symplectic transvections and “nullspace-like” properties of symplectic matrices.
0 T O Factor each ' € F into a product of elementary symplectic transformations, possibly using the algorithm given in [Can17], and
([a, 0], [d, V])s 2 a'b" +bal =[a, b Q[d, V] (mod 2), where = . 6” (3) compute the physical Clifford operator g.
m

©® Check for conjugation of g with S, X;, Z;. If some signs are incorrect, post-multiply by an element from HWWy as necessary to satisfy
these conditions (apply [NC10, Prop. 10.4] to S+ = (S, X;, Z;)). Note that every Pauli operator in HWy induces the symplectic
transformation I, since HWy is the kernel of the map ¢, so post-multiplication does not change the target symplectic matrix F'.

. D(a,b)D(d’, 1) = (=1){@La" VD Do’ ) D(a, b) = commute iff ([, b], [d/,b])s =

® Express g as a sequence of Clifford gates, obtained from the factorization in step 4, which yields the desired physical circuit.

Isomorphism v: HWy /{(t¥ ) — F5™ defined as y(D(a, b)) = [a, b].

Clifford Group and Symplectic Matrices 1 — H L L H X |- 1 ? D H | T H |
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Cliffy £ Ny (HWy): all g € Uy s.t. gHWyg' = HWy (normalizer of HWy in Uy). 6 An 6 o— D
Gate Unitary Matrix Action on Paulis Figure 2: Logical Hadamard operator H, synthesized by Chao and Reichardt [CR17] (left), and using our generic algorithm (right). This

illustrates that, while our algorithm yields all symplectic solutions for the desired logical operator g, the decomposition we use from [Canl7]
may not yield lowest circuit complexity or fault-tolerance. Hence, our circuits can potentially be further optimized for such purposes.

Hadamard H= LQ h H Z);gi - f{
- Summary of Our Technical Results
PHh p A 1 0 PXP' =Y - For an [m, m — k] stabilizer code, the number of symplectic solutions for each logical Clifford operator is 2*(**1)/2 Qur generic
ds¢ 0 e PZPT _ 7 algorithm above details the steps to determine all solutions and their circuits, using a particular decomposition of symplectic matrices.

= For an [m, m — k] stabilizer code with stabilizer S, each physical realization of a given logical Clifford operator that normalizes S can
be converted into a circuit that centralizes S, i.e., commutes with every element of .S, while realizing the same logical operation.

Controlled-NOT |CNOT_,o = [ f 0 ] CNOT{ 9(X ® ]Q)CNOTJ{_Q =X ®X =X1X9

0 X - Given a sequence of binary vectors z;,y;, @ = 1,...,t < 2m s.t. (x;,2;)s = (¥i, Y;)s, there exists a symplectic matrix F', expressible as
a product of at most 2t transvections, s.t. z;F' = ;. We also given an explicit algorithm to compute such a matrix.
Al 0 : - Let {(uq,v,), a € {1,...,m}} be a collection of pairs of binary vectors that form a symplectic basis for 5™, where u,, v, € F3".
Controlled-Z VAVES 0 7 CZ1o(X ® ]2)C212 =X ®Z=X129 Consider a system of linear equations u; F' = u;, v; ' = v}, where i € Z C {1,...,m},j € J C{1,...,m} and F' € Sp(2m, Fy). Let

o 2 |Z| + |J|. Then there are 2(2F1/2 solutions F to the system. We also give an algorithm to efficiently enumerate them.

bT

Symplectic Representation: Define E(a,b) = 1% D(a,b). If g € Cliffy then
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