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Recent Exciting Result

Article

Quantum supremacy using aprogrammable
superconducting processor
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Keith Guerin' Steve Habegger', Matthew P. Harrigan’, Michael J. Hartmann™®, Alan o',
Markus Hoffmann', Trent Huang', Travis S. Humble’, Sergei V. Isakov?, Evan Jeffrey!,

Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi', Julian Kelly, Paul V. Klimov', Sergey Knysh!,
Alexander Korotkov'®, Fedor Kostritsa', David Landhuis', Mike Lindmark', Exik Lucero,
Dmitry Lyakh®, Salvatore Mandra®®, Jarrod R. McClean', Matthew McEwen®,

Published online: 23 October 2019

v ', XlzoM| Krist | i = Josh Mutus’,
of ! Y, ill', Murphy Yuezhen Niu!, Eric Ostby’,
d khov', JohnC. Plall‘ Chris Qui !, EleanorG Rieffel’, Pedram Roushan',
Nicholas C. Rubin', Daniel Sank', Kevin 1. Satzinger', Vadim Smelyanskiy', Kevin . Sung
Matthew D. Trevithick', Amit Vai ', Benjamin Vil

Z.Jamie Yao!, Ping Yeh', Adam Zalcman', Hartmut Neven' & John M. Martinis!*

The isthat certai ational be
executed exponentially faster on a quantum processor than onaclassical pmcessor‘ A
hallenge is tobuild ahigh-fidelity pr rcapabl

algorithms in an exponentially large computational space. Here we report the use of a

processorwith pmgrammable superco nducungqubx(51 7 tocreate quantum states on

53 qubits, cor paceof dimension2® (abom 10%),
rom i the

distribution, which we verify using classical simulations. Our Sycamore processor takes

about 200 seconds to sample one instance of a quantum circuit a million times—our

benchmarkscurrentlyindi the equi taskfora f.the-art classical
10,000 years. Thisdramatic ncreasein
speed compared toall known classical algorithmsi I real of
“forth i ional task, heraldinga much-

anticipated computing paradigm.
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Theme of the Dissertation

Quantum technologies promise significant advances in several practical
applications, but the hardware remains noisy

Question: What prominent applications and how to tackle noise?

Here we consider two applications:
@ Computing: Classical coding in dual bases; borrowed decoders

@ Communications: Polar codes for classical-quantum channels

Further strengthening the bridge to classical coding theory \
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Contributions via Classical Coding

@ Computing: Classical coding in dual bases = quantum error
correction is even possible; classical decoders can be borrowed

o New classical coding problem under quantum fault-tolerance

o Classical codes for quantum unitary 2-designs in benchmarking
@ Communications: Classical polar codes for classical-input
quantum-output channels; decoder infeasible in practice

o Borrow belief-propagation algorithm with a quantum twist

o Optimality, new application for photonic quantum computing
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Overview

@ Synthesizing Logical Operators for Stabilizer Codes
@ Motivation and Strategy
o Logical Clifford Synthesis (LCS)
@ Quadratic Form Diagonal (QFD) Gates
@ Stabilizer Codes Matched to QFD Gates

© Classical Communications over Pure-State Channels
@ Introduction and Motivation
o Classical Belief-Propagation (BP)
o Belief-Propagation with Quantum Messages (BPQM)
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Overview

@ Synthesizing Logical Operators for Stabilizer Codes
@ Motivation and Strategy
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Goal: Logical Operations from Physical Gates

Information |X>L
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Goal: Logical Operations from Physical Gates

logical operation .
Information |X>L |X>L
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Goal: Logical Operations from Physical Gates

QECC: Quantum Error Correcting Code

logical operation .
Information |X>L |X>L

[n, k,d]
QECC
encode

|9x)
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Goal: Logical Operations from Physical Gates

QECC: Quantum Error Correcting Code

logical operation .
Information |X>L |X>L

[n, k,d]
QECC
encode

relevant physical operation

|9x) |¥5)
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Goal: Logical Operations from Physical Gates

QECC: Quantum Error Correcting Code

logical operation

Information |X>L |)~(>L
[n, k, d] [n, k, d]
QECC QECC
encode decode

relevant physical operation

|9x) |¥5)
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Goal: Logical Operations from Physical Gates

QECC: Quantum Error Correcting Code

logical operation

Information |X>L |)~(>L
Need to
translate
[, k. d] for the [, k. d]
QECC [n, k, d] QECC
encode dEéC decode

relevant physical operation

|9x) |¥5)
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Goal: Logical Operations from Physical Gates

QECC: Quantum Error Correcting Code

logical operation

Information |X>L |)~(>L
Need to
translate
[, k. d] for the [, k. d]
QECC [n, k, d] QECC
encode dECC decode

relevant physical operation

|9x) |¥5)

What QECC structure is required so that
the physical application of certain gates preserves the code subspace?
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Line of Thought

What QECC structure is required so that
the physical application of certain gates preserves the code subspace?

Pauli operators form an orthonormal basis for all operators!

@ Understand action of those gates on Pauli operators
@ Use the action to study effect on quantum error correcting codes

@ Finally, restrict to gates that are reliable in the lab
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In this talk ...

@ Synthesizing Logical Operators for Stabilizer Codes
@ Motivation and Strategy
o Logical Clifford Synthesis (LCS)
@ Quadratic Form Diagonal (QFD) Gates
@ Stabilizer Codes Matched to QFD Gates
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Overview

@ Synthesizing Logical Operators for Stabilizer Codes

o Logical Clifford Synthesis (LCS)
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Pure (Quantum) States

Qubit: Mathematically, it is a 2-dimensional vector space over C

Pure state: 1)) =« |0) 4+ 1), with a, 3 € C and |a]?> + |82 =1

1
1

Example (n =2 qubits) : |0) ® |1) = [(1)] ® [ﬂ = El)) =|01)
_O:

e =[] - § - 10
_O_

Pure state (n qubits): |¢) = Zvng ay |v), ay € C, Zveﬁ?g |y |> =1
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Heisenberg-Weyl (or Pauli) Group HW)y

Pure state (n qubits): |¢) =3, cpmav [v), av € C, 32 cp lo|> =1
HWy = (51, X, Z,Y | ©:=+v—1, k € Zs), 1,X,Y,Z € C**?
Bit-Flip: X [0) = |1), X|1) = |0)

Phase-Flip: ~ Z|0) = [0), Z|1) = —|1)
Bit-Phase Flip: Y :=1-XZ, XZ=-27X

For n Qubits: HW) = Kronecker products of n HW, matrices (N = 2")
Example (n=3): (X@Z@ Y)(|0)®|[1)® (1)) =[1)® (- 1)) ® (—(0))

Important Fact

Pauli operators form an orthonormal basis for all N x N matrices
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Pauli Group, Clifford Group and Symplectic Matrices

Heisenberg-Weyl Group HWyy = {1"E(a, b): a,b € F3, k € Za}
a= 1 0 1

E(a,b),a,beclF5: X®Z®Y =E(101,011) b— 0 1 1
n=3 qubits a b E(a,b): X, 7 Y3

Symplectic Inner Product: {[a, b], [c, d])s := [a, b] Q[c,d]T,Q = D) g]

/ 40
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Pauli Group, Clifford Group and Symplectic Matrices

Heisenberg-Weyl Group HWyy = {1"E(a, b): a,b € F3, k € Za}

E(ab)abeF): X©Zoy=E(101,011) - é (1’ 1
b

n=3 qubits a E(a, b) = X, 2 Ys

Symplectic Inner Product: {[a, b], [c, d])s := [a, b] Q[c,d]T,Q = D) g]

Clifford Group: All unitaries that map Paulis to Paulis under conjugation
Symplectic Matrices: If g € Cliffy (Cliffords on n = log, N qubits) then
g E(a,b)g' = £E([a, b]F,), where FgQFgT =Q

Fg € ]F%”“” is symplectic: preserves the symplectic inner product
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Pauli Group, Clifford Group and Symplectic Matrices

Heisenberg-Weyl Group HWyy = {1"E(a, b): a,b € F3, k € Za}

E(ab)abeF): X©Zoy=E(101,011) - é (1’ 1
n=3 qubits a b

E(a,b): X1 ZQ Y3

Clifford Group: All unitaries that map Paulis to Paulis under conjugation

g E(a,b) g’ = £E ([a, b]F;), where F;QF] =Q

Fg € F2"2" is symplectic
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Two-Qubit Clifford: The Controlled-Z (CZ) Gate

Symplectic Representation: gE(a, b)g' = +E ([a, b]F;)

g(X@l)g

=X®7Z
(or) CZ(X®1)=(X® Z2)CZ
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Two-Qubit Clifford: The Controlled-Z (CZ) Gate

Symplectic Representation: gE(a, b)g' = +E ([a, b]F;)

g(X ® I)g' = gE£(10,00)g"
= E ([10,00]F)
— E(10,01)
—X®Z
(or) CZ(X @)= (X® Z)CZ
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Two-Qubit Clifford: The Controlled-Z (CZ) Gate

1 100 1

P h Bg] 0110
g=C2= 1 Fe [o /J 10
-1 0 1

Symplectic Representation: gE(a, b)g' = +E ([a, b]F;)

g(X ® I)g' = gE£(10,00)g"
= E ([10,00]F)
— E(10,01)
—X®Z
(or) CZ(X @)= (X® Z)CZ
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Stabilizer Codes (N = 2")

r-dimensional Stabilizer: Generated by r commuting Pauli operators:

S={(eE(ai,b;);i=1,....r), ¢ e {£l}, —In ¢S

[n, k = n— r,d] Stabilizer Code: The 2 dimensional subspace, V/(S),
jointly fixed by all elements of S

V(S) = {|¢> eCN: g|p) = [ forall g s}
Example:

[6,4,2] CSS Code: S := (X®° = E(a,0),Z% = E£(0,a)),a:=[111111]

Generator Matrix: GSZ|:(])- (1) (1) (1) 2 (1)3 é é é é é}
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Universal Quantum Computation

Goal: Implement arbitrary unitary operations on the k encoded qubits

Break-it-down: Need to implement all Clifford gates and at least
one non-Clifford gate on the k logical qubits

Starting Point

Algorithm for implementing any logical Clifford gate on any stabilizer code

@ Understand action of Clifford gates on Pauli operators

@ Use the action to study effect on quantum error correcting codes
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Logical Clifford Synthesis

Synthesis of CZL, for [6,4,2] Code

All* circuits g € Cliffys
Logical Clifford LCS that realize gt and fix S
L _ L — . — - .
g = CZp Algorithm (stabilizer freedom ignored)
* up to an equivalence class

Stabilizer Logical Pauli Operators
§ = (X®°,Z%) _— Xj = XuXj1 = E(e1 + €j41,0)
= <E(LQ)7 E(Q?l» ZJ = ZjJrIZG = E(Q:§j+1 +§6)
(=123,4)

Implementation: https://github.com/nrenga/symplectic-arxivi8a

Paper: https://arxiv.org/abs/1907.00310
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Kerdock (Logical) Unitary 2-Design

2-Design: Unitary ensemble, matches Haar measure up to second moment
Kerdock Set Pk(n): A specific collection of N = 2" symmetric matrices

Kerdock Code K(n): Each (classical) codeword cp , € Z} is indexed by
P € Px(n),w € F3, and & € Zy; so, totally 2272 codewords

Obtain graph states from all cp ,, . by mapping Zs — {1,2,—1, —1} !

The symmetry group of the graph states produces a unitary 2-design \

Combining with the LCS algorithm produces a logical unitary 2-design!
See https://arxiv.org/abs/1904.07842 for details

Narayanan Rengaswamy (Duke)
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LCS: Exploit Action on Pauli Operators

Main Ideas in LCS: Use g E(a, b) ' = +E([a, b]Fz)
@ Implied logical action: gLXjL(gL)T,gLZjL(gL)Jr = g)_(ng,FnggT
e g < Cliff)y must map stabilizers to stabilizers under conjugation

@ Translate conjugation relations into symplectic constraints on Fz
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LCS: Exploit Action on Pauli Operators

Main Ideas in LCS: Use g E(a, b) ' = +E([a, b]Fz)
@ Implied logical action: gLXjL(gL)T,gLZjL(gL)Jr = g)_(ng,FnggT
e g < Cliff)y must map stabilizers to stabilizers under conjugation
@ Translate conjugation relations into symplectic constraints on Fz
Issues in generalizing to non-Clifford gates:

@ Translating logical non-Cliffords to physical non-Cliffords is hard:
there is no clear symplectic connection

@ Physical operation is not Clifford = does not necessarily map
stabilizers to stabilizers under conjugation
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Overview

@ Synthesizing Logical Operators for Stabilizer Codes

@ Quadratic Form Diagonal (QFD) Gates
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Gates for Universal Computation

Cliffy = (H, P, CZ or CNOT (on all qubits)) «— Not universal!

Gate Unitary Matrix Action on Paulis  Symplectic Matrix
11 HXH' = Z 01
1 _
Hadamard H = 7 [1 _1] HzHt - x Fy = [1 0}
1o PXPT =Y 1 1
Phase P = {0 J =z p7pt — 7 Fp = [0 J
— ,VRVT
Phase (P), tr = Z L [v) (v| CZ: X; = XoZp T — [/6 ﬂ
Ctrl-Z (CZ ver; _ n|
-2 (C2) (vRvT computed over Z) 22— Za with R symmetric
X+Y
TXTH ="~
T T = Ll) 612/4] =P V2 ?
TZT = Z
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Gates for Universal Computation

Gate Unitary Matrix Action on Paulis  Symplectic Matrix

Vi VT
Phase (P), =D " MWV X XeZe T [’" R}

n 0o |/
Ctrl-Z (CZ veFs _ o
-2 (C2) (vRvT computed over Z) 22— Za with R symmetric

X+Y
TXTH ="~

T T;F O]ﬁ NG ?
TZT = Z
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Quadratic Form Diagonal (QFD) Gates

S.X. Cui, D. Gottesman and A. Krishna, Phys. Rev. A, 2017
If U e CW® is diagonal, then all entries are 2{-th roots of unity.

Examples:
PecC® & R=[1] over Z4

= di _ 2
C@) . ¢y — Zvng JRYT V) (v] CZ =diag[1,1,1,-1] C

R is n X n symmetric
with entries in Z»

01
— R = [1 O] over Zg

cM) = HWy
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Quadratic Form Diagonal (QFD) Gates

S.X. Cui, D. Gottesman and A. Krishna, Phys. Rev. A, 2017
If U e CW® is diagonal, then all entries are 2{-th roots of unity.

Examples:
PecC® & R=[1] over Z4
TeC® & R=[1] over Zg

CO: ) = 5 g €7 V) (V]

R is n x n symmetric
with entries in Zoe,

¢ =exp (37)
C@: tr =3 epg R V) (v]

R is n X n symmetric
with entries in Z»

CZ = diag[1,1,1,-1] € c®

01
— R = [1 O] over Zg

cM) = HWy
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Quadratic Form Diagonal (QFD) Gates

S.X. Cui, D. Gottesman and A. Krishna, Phys. Rev. A, 2017
If U e CW® is diagonal, then all entries are 2{-th roots of unity.

Examples:
PecC® & R=[1] over Z4
TeC® & R=[1] over Zg

CO: ) = 5 g €7 V) (V]

R is n x n symmetric
with entries in Zoe,

&= ep ()

= di _ )
C@) . ¢y — Zvng JRYT V) (v] CZ =diag[1,1,1,-1] C

0 1
R is n x n symmetric ~ R= 10 over Zg
with entries in ZZ CP — dlag [1/ 1’ 1’7/] c C(3)
0 1
¢ = Hwy < R= 1 ol over Zg
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Diagonal Recursion for QFD Gates

Recollect: Clifford g acts as g E(a, b) g’ = +E([a, b]F,), Fgz symplectic

How do QFD gates act on Pauli matrices under conjugation?
¢ o\' Ih R -1
TI(?)E(37 b) (TI(?)> :¢(Ra a, b,() -E <[a7 b] |:(S1 In:|> 'T,(%(R;’g)

®(R, a, b, ?): Deterministic global phase

R(R,a,): New symmetric matrix with entries in Zye—1

Narayanan Rengaswamy (Duke) Classical Coding for Quantum Applications Ph.D. Defense: March 18, 2020 18 /40
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Diagonal Recursion for QFD Gates

Recollect: Clifford g acts as g E(a, b) g’ = +E([a, b]F,), Fgz symplectic

How do QFD gates act on Pauli matrices under conjugation?
¢ o\' Ih R -1
TI(?)E(37 b) (TI(?)> :¢(Ra a, b,() -E <[a7 b] |:(§ In:|> 'T,(%(R;’g)

®(R, a, b, ?): Deterministic global phase

R(R,a,): New symmetric matrix with entries in Zye—1

All 1- and 2-local diagonal gates in C(©) are QFD for any ¢ > 1
Mglmer-Sgrensen gates MS(5;) are QFD up to Hadamards

For details see: https://arxiv.org/abs/1902.04022
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Overview

@ Synthesizing Logical Operators for Stabilizer Codes

@ Stabilizer Codes Matched to QFD Gates
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Universal Quantum Computation

Goal: Implement arbitrary unitary operations on the k encoded qubits

Break-it-down: Need to implement all Clifford gates and at least
one non-Clifford gate on the k logical qubits

Synthesizing logical non-Cliffords is hard

First explore how physical non-Clifford gates affect the code subspace

@ Understand action of non-Clifford gates on Pauli operators

@ Use the action to study effect on quantum error correcting codes
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LCS: Exploit Action on Pauli Operators

Main Ideas in LCS:
@ Implied logical action: gLXjL(gL)T,gLZjL(gL)Jr = gXig',gZg'
o g € Cliff)y must map stabilizers to stabilizers under conjugation
o Translate conjugation relations into symplectic constraints on Fz
Issues in generalizing to C(9), ¢ > 2:

@ Translating logical non-Cliffords to physical non-Cliffords is hard:
there is no clear symplectic connection.

@ Physical operation is not Clifford = does not necessarily map
stabilizers to stabilizers.
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LCS: Exploit Action on Pauli Operators

Main Ideas in LCS:
@ Implied logical action: gLXjL(gL)T,gLZjL(gL)Jr = gXig',gZg'
o g € Cliff)y must map stabilizers to stabilizers under conjugation
o Translate conjugation relations into symplectic constraints on Fz
Issues in generalizing to C(9), ¢ > 2:

@ Translating logical non-Cliffords to physical non-Cliffords is hard:
there is no clear symplectic connection. QFD Gates!

@ Physical operation is not Clifford = does not necessarily map
stabilizers to stabilizers. Preserve projector onto code subspace!
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Reverse LCS Strategy for Physical T Gates

QECC: Quantum Error Correcting Code

x)

[n, k, d]
QECC
encode

|1hx

logical operation

/
/

/ Need to
) translate
for the
| [n, k, d]
' QECC
4

relevant physical operation

%)1

[n, k, d]
QECC
decode

[V5)

What stabilizer structure is required so that
the physical application of T gates preserves the code subspace?

Narayanan Rengaswamy (Duke)
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Transversal T as a Logical Operator

Question: When is transversal T a logical operator for a stabilizer code?
What is the induced logical operation?

Stabilizer: S = (¢;E(aj, bi); i=1,2,...,r), ¢ € {£1}

Iy + E;E(a,', b,') 1
— >_abes €abE(a, b)

Code Projector: Mg =[]i_; 5 = o
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Transversal T as a Logical Operator

Question: When is transversal T a logical operator for a stabilizer code?
What is the induced logical operation?

Stabilizer: S = (¢jE(aj, bi); i=1,2,...,r), ¢ € {£1}

Iy + E;E(a,', b,') 1
— >_abes €abE(a, b)

Code Projector: Mg =[]i_; 5 = o

Calculation using QFD recursion [ hard for general QFD! |

n n 1 T
TEME(a,b) (T5)! = Sty (1) E(a,bay)
y=a

2WtH
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Transversal T as a Logical Operator

Question: When is transversal T a logical operator for a stabilizer code?
What is the induced logical operation?

Stabilizer: S = (¢jE(aj, bi); i=1,2,...,r), ¢ € {£1}

Iy + E;E(a,', b,') 1
———— " = 57 2apes €apE(a, b)

Code Projector: Mg =[]i_; 5 =5

Calculation using QFD recursion [ hard for general QFD! |

n n 1 T
TEEG0) (T7)' = Za 217 £ 5©)
y=a

T®" is a logical operator iff T®"Mgs(T®")" = MNs: [ also hard in general! |

]- €a,b b 1
Z owty(a) /ZZ g E a b@y) or Z 6a,bE(av b)

a,beS a,besS
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CSS-T Codes and Two Corollaries

CSS-T Codes: Pair (Cy, () of codes satisfying C; C C; and the following:
@ All codewords x € G, have even Hamming weight wy(x).

@ For each x € Gy, Ci- consists of a dimension wy(x)/2 self-dual code
Z, supported on x (i.e., Zy is essentially a [wy(x), wy(x)/2] code).

This yields a quantum code with parameters [n, k; — ko, d > min(dy, d5-)].
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CSS-T Codes and Two Corollaries

CSS-T Codes: Pair (Cy, () of codes satisfying C; C C; and the following:
@ All codewords x € G, have even Hamming weight wy(x).

@ For each x € Gy, Ci- consists of a dimension wy(x)/2 self-dual code
Z, supported on x (i.e., Zy is essentially a [wy(x), wy(x)/2] code).

This yields a quantum code with parameters [n, k; — ko, d > min(dy, d5-)].

Two Corollaries: (Non-degenerate = each stabilizer has weight > d)

@ Triorthogonal codes form the only CSS family with T®" = T®k,

@ For each [n, k, d] non-degenerate stabilizer code that supports
transversal T, there is an [n, k, d] CSS-T code that does too.
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Classical Coding Problem

CSS-T Codes: Pair (Cy, () of codes satisfying C; C C; and the following:
@ All codewords x € G, have even Hamming weight wy(x).

@ For each x € G, Ci- consists of a dimension wy(x)/2 self-dual code
Z, supported on x (i.e., Zy is essentially a [wy(x), wy(x)/2] code).

This yields a quantum code with parameters [n, k; — ko, d > min(dy, d5-)].

Open Problem

Ua = k) _ o(1) and % =Q(1)

A CSS-T family with

Would imply constant overhead magic state distillation! [fy = %]

(see arXiv:1910.09333, or arXiv:2001.04887 for shorter version)
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Summary and Future Work

@ Reviewed the Logical Clifford Synthesis (LCS) algorithm
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Summary and Future Work

@ Reviewed the Logical Clifford Synthesis (LCS) algorithm

@ Characterized QFD gates in the Clifford hierarchy
o All 1- and 2-local diagonal gates in the hierarchy are QFD

e Rigorously derived their action on Pauli matrices by conjugation
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Summary and Future Work

@ Reviewed the Logical Clifford Synthesis (LCS) algorithm
@ Characterized QFD gates in the Clifford hierarchy
o All 1- and 2-local diagonal gates in the hierarchy are QFD

e Rigorously derived their action on Pauli matrices by conjugation

@ Used QFD framework to construct codes matched to T gates
o Triorthogonal codes form the only CSS family with T®" = T®k
o CSS-T optimal for T®" among non-degenerate stabilizer codes

o Paper: Extensions to finer angle Z-rotations and Reed-Muller codes
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Summary and Future Work

@ Reviewed the Logical Clifford Synthesis (LCS) algorithm
@ Characterized QFD gates in the Clifford hierarchy
o All 1- and 2-local diagonal gates in the hierarchy are QFD

e Rigorously derived their action on Pauli matrices by conjugation

@ Used QFD framework to construct codes matched to T gates
o Triorthogonal codes form the only CSS family with T®" = T®k

o CSS-T optimal for T®" among non-degenerate stabilizer codes

o Paper: Extensions to finer angle Z-rotations and Reed-Muller codes

@ Use our recipe to find codes supporting any reliable QFD gate?

Key Takeaway
Expressing unitaries in the Pauli basis seems like an under-utilized trick
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Overview

© Classical Communications over Pure-State Channels
@ Introduction and Motivation
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Message Passing Algorithms

@ To compute quantities related to problems defined on graphs

@ They work by passing messages between nodes of the graph

Belief-Propagation (BP)

A message passing algorithm to efficiently compute posterior marginal
distributions in statistical inference problems

@ BP exactly performs bit-wise (or variable-wise) maximum-a-posteriori
(bit-MAP) estimation when the underlying graph is a tree

@ When the graph has cycles, usually run BP for a fixed number of
iterations; it converges in many cases, e.g., LDPC codes
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Extending BP to the Quantum World

Belief-Propagation (BP): A message passing algorithm to efficiently
compute posterior marginal distributions in statistical inference problems

@ How to define BP so that it passes quantum messages?

@ Why do we care? Might provide significant advantages in classical
communications over quantum channels

@ [Renl7]: A BP algorithm that passes qubits (and classical bits) as
messages; helps decode binary linear codes (with tree factor graphs)
on pure-state channels — BP with Quantum Messages (BPQM)

Description, performance, of BPQM with a 5-bit tree code as example \
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Overview

© Classical Communications over Pure-State Channels

@ Classical Belief-Propagation (BP)
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Binary Linear Codes and Factor Graphs

An [n, k, d] code C can be defined by a binary parity-check matrix H as:
C={xe{0,1}": Hx" =07, H e {0,1}(r)xn}

It encodes k message bits into n code bits, the minimum Hamming weight
of any codeword x € C is d. Running Example: [5,3,2] code defined by

W; = Wi(yilx;) = P[Y; = yi|lXi = x;]: Channel

X1 X2 X3 X4 Xs

_afl1 11 0 0
H*cz(10011)

Narayanan Rengaswamy (Duke)
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Maximum-a-Posteriori (MAP) Decoding

Problem: Transmit codeword x € C through W", receive vector y € V",
optimally estimate the sent codeword X € C given observation y

p(y|x) - p(x) X1 X2 X3 X4 X5

xefo1ys PY[X) - p(x) y_afl 1.1 0 0
q<1 0 0 1 1>

p(xly) = 5
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Maximum-a-Posteriori (MAP) Decoding

Problem: Transmit codeword x € C through W", receive vector y € V",
optimally estimate the sent codeword X € C given observation y

plaly) = 2L P x e % a
T Zaeap )P c1<1 11 0 0>
_HiﬂW(yk\xk)-ﬁ]I(gGC) o\1 0 0 1 1
a p(y)
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Maximum-a-Posteriori (MAP) Decoding

Problem: Transmit codeword x € C through W", receive vector y € V",
optimally estimate the sent codeword X € C given observation y

plaly) = —20L) PX) S
- 256{0,1}5 plylx) - p(x) . af1 1 1 0 0
[Thor Wolx) - glxec) C2< 10 0 11 >
a p(y)
5
o H W (yk|xk) - [I(x1 @ x2 ® x3 = 0) I(x1 ® xa ® x5 = 0)]
k=1
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Maximum-a-Posteriori (MAP) Decoding

Problem: Transmit codeword x € C through W", receive vector y € V",
optimally estimate the sent codeword X € C given observation y

plaly) = —20L) PX) S
- 256{0,1}5 plylx) - p(x) . af1 1 1 0 0
[Thor Wolx) - glxec) C2< 10 0 11 >
a p(y)
5
o H W (yk|xk) - [I(x1 @ x2 ® x3 = 0) I(x1 ® xa ® x5 = 0)]
k=1

= W(yilxa) - [I(xa @ x2 @ x3 = 0) W (y2|x2) W (y3|x3)]
[I(x1 © xa © x5 = O) W (ya|xa) W (ys|xs)],
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Maximum-a-Posteriori (MAP) Decoding

Problem: Transmit codeword x € C through W", receive vector y € V",
optimally estimate the sent codeword X € C given observation y

plaly) = —20L) PX) S
- 256{0,1}5 plylx) - p(x) . af1 1 1 0 0
[Thor Wolx) - glxec) C2< 10 0 11 >
a p(y)
5
o H W (yk|xk) - [I(x1 @ x2 ® x3 = 0) I(x1 ® xa ® x5 = 0)]
k=1

= W(yilxa) - [I(xa @ x2 @ x3 = 0) W (y2|x2) W (y3|x3)]
[I(x1 © xa © x5 = O) W (ya|xa) W (ys|xs)],

= argmax p(x|y) «— Block-MAP
x€{0,1}5 B

XMAP
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Bit-MAP and Belief-Propagation (BP)

Block-MAP is optimal but has exponentially growing complexity in k
Bit-MAP marginalizes the joint posterior and makes a decision bit-wise

Decode bit 1 as:

% MAP = argmax > pxly)

x€{01} x2,X3,%4,x5€{0,1}*

= argmax {W(y1|x1) . Z I(x1 @ x2 @ x3 = 0) W (y2|x2) W (y3]x3)
x1€{0,1} x2,x3€{0,1}2

x4,%5€{0,1}2

. |: Z H(X]_ D x4 O x5 = O)W(y4X4)W(y5|X5)‘| }
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Bit-MAP and Belief-Propagation (BP)

Block-MAP is optimal but has exponentially growing complexity in k
Bit-MAP marginalizes the joint posterior and makes a decision bit-wise

BP computes “local beliefs” as messages and passes
between nodes to realize bit-MAP on tree graphs

Decode bit 1 as:

% MAP = argmax > pxly)
x€{01} x2,X3,%4,X5€{0,1}4
= argmax {W(y1|x1) . Z I(x1 @ x2 @ x3 = 0) W (y2|x2) W (y3]x3)
x1€{0,1} XQ,X3E{0,1}2

Y I0a ® x B x5 = 0)W(yalxa) W(ys]xs) }
x4,%5€{0,1}2
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Induced Channels in BP

Variable Node Convolution: The transition probabilities of this channel are

W e W]y, zlx) = W(ylx) - W(zlx,y) = W(ylx) - W'(z|x)
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Induced Channels in BP

Variable Node Convolution: The transition probabilities of this channel are

W e W]y, zlx) = W(ylx) - W(zlx,y) = W(ylx) - W'(z|x)

@ w = (y,z)

Atxi — Wnlba)- | Y. T0a ®x @ x3 = 0)W(yax2) W(ys|xs)
x2,x3€{0,1}2

> I0a @ xa @ x5 = 0)W(yalxa) W(ys|xs)
x4,x5€{0,1}2
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Induced Channels in BP

Factor Node Convolution: The transition probabilities of this channel are
Wa Wiy, z|x) = %W(y|u =x)- W(zlv=0)+ %W(y|u =xol) - W(zlv=1)

= S W) W(el0) + S W(ylx @ 1) W(z]1)
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Induced Channels in BP

Factor Node Convolution: The transition probabilities of this channel are

Wa Wiy, z|x) = %W(y|u =x)- W(zlv=0)+ %W(y|u =xol) - W(zlv=1)

= S W) W(el0) + S W(ylx @ 1) W(z]1)

> I @ xe @ x3 = 0)W(yalxx) W(yslxs) «— at ¢
x2,x3€{0,1}2

= W(y2lxe = x1)W(yslxs = 0) + W(y2x2 = x1 & 1)W(yslxs = 1)
o [W @ W](y2, y3)x1),
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Generalized Channel Convolutions [Ren17; Ren18]

Classical Channels W(y|x) = P[Y = y|X = x]:
W & W(y, 2}x) = W(ylx) - W/(z}x),
W& Wy, 2x) = SW(ylx) - W/(zl0) + 3 W(ylx ©1) - W/(zl)
Classical-Quantum Channels W(x), x € {0, 1}:
W e W](x) = W(x) @ W (x),

W@ W](x) = %W(X) ® W(0) + %W(x@ 1) ® W/(1)
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Generalized Channel Convolutions [Ren17; Ren18]

Classical Channels W(y|x) = P[Y = y|X = x]:
W & W(y, zIx) == W(ylx) - W/(zlx),
W& Wy, 2x) = SW(ylx) - W/(zl0) + 3 W(ylx ©1) - W/(zl)
Classical-Quantum Channels W(x), x € {0, 1}:
W & W(x) = W(x) & W'(x),
W& W]k = 3 W(x)® W(0) + W(xe 1) e W(1)

How do we generalize BP w.r.t. these channel convolutions?
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Overview

© Classical Communications over Pure-State Channels

o Belief-Propagation with Quantum Messages (BPQM)
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Pure-State CQ Channel

Defined for classical inputs x € {0,1} as

W(x) = (x[0) - |0) (0] + (x|1) - [—0) (0]
[(=1)6) {((-1)*0] ,
40) = g]o>ising\1>

Fidelity of the channel: F(W) := | (6] — 6) |? = cos?
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Pure-State CQ Channel

Defined for classical inputs x € {0,1} as

W(x) = (x[0) - |0) (0] + (x|1) - [—0) (0]
[(=1)6) {((-1)*0] ,
40) = g]0>j:sin§\1>

Fidelity of the channel: F(W) := | (6] — 6) |? = cos?
Let g := P[x = 0]. Then the joint density matrix is

pxe = q-10) (Olx ®16) (6] + (1 — @) - |1) (1[5 ©[~6) (6] 5.

The capacity is attained at ¢ = 1/2 and is given by [GW12]

CalW) = (516 Bls + 5 1-6) (015 ) = o (W) .
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Helstrom Measurement [Hel69; HLG70]

An optimal measurement to distinguish between any two states pg, p1. It
is defined by the projectors {Myer, I — Mg }:

Mua = > 1) (i, (po—p1) i) = A li)-

it X>0
For the pure state channel, for any 6, easy to see that
po — p1 = 10) (6] — |—6) (~6] = sin0 - X,

so the Helstrom measurement is projecting onto the Pauli X basis, i.e., the
projectors are {|+) (-], |—) (—|}.
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Helstrom Measurement [Hel69; HLG70]

An optimal measurement to distinguish between any two states pg, p1. It
is defined by the projectors {Myer, I — Mg }:

Mua = > 1) (i, (po—p1) i) = A li)-

it X>0
For the pure state channel, for any 6, easy to see that
po — p1 = 10) (6] — |—6) (~6] = sin0 - X,

so the Helstrom measurement is projecting onto the Pauli X basis, i.e., the
projectors are {|+) (+|,|—) (—|}. Optimal error probability: ([Dol73])

1 1 1-1-FW) 1-—sinf

PminZE_ZHpO_lelz 2 2

Hence, the Helstrom measurement induces the channel BSC(Ppin)-
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Optimal Processing for Pure-State Channel

Capacity under symbol-by-symbol Helstrom Measurement:

cl(W)—l—hz(Pmm)—l—hz<1_ — F(W)) < Cu(W).

Ultimate Holevo Capacity Coo(W) requires collective measurements!

Classical-Quantum Polar Codes close this gap but the quantum successive
cancellation decoder is infeasible to realize in practice [WG13].
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Optimal Processing for Pure-State Channel

Capacity under symbol-by-symbol Helstrom Measurement:

cl(W)—l—hz(Pmm)—l—h2<1_ — F(W)> < Cu(W).

Ultimate Holevo Capacity Coo(W) requires collective measurements!

Classical-Quantum Polar Codes close this gap but the quantum successive
cancellation decoder is infeasible to realize in practice [WG13].

1. Is it possible to define a quantum BP decoder that closes this gap?

2. Given a code, how to define quantum BP for optimal block error rate?
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Generalized Channel Convolutions [Ren17; Ren18]

Classical Channels W(y|x) = P[Y = y|X = x]:
W & W(y, zIx) == W(ylx) - W/(zlx),
W& Wy, 2x) = SW(ylx) - W/(zl0) + 3 W(ylx ©1) - W/(zl)
Classical-Quantum Channels W(x), x € {0, 1}:
W & W(x) = W(x) & W'(x),
W& W]k = 3 W(x)® W(0) + W(xe 1) e W(1)

How do we generalize BP w.r.t. these channel convolutions?
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BPQM on the 5-bit Code

BPQM Node Operations:
Us (0,0") ([W & W'](x)) Us (0, 0')" = [£0%) (£6%| @ [0) (0],

Us(IWE W) UL = 3 pj’j:91><iﬁj ® j) (]
jefo.1y

Apply BPQM operations to decode bit x; of the code:

@ B © @ © g
L A=
2 1 T
3tV
1 1 U 1
PRREDURENSE hy NH P
ot H ——
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Full BPQM Circuit for the 5-bit Code

(a) () (o) @
1 — — Ko
ssesseensesmas R | Ua0.65)| | Ua(60.65) | |UL(6.08)
2 ' — — — E — - H :
l Hva08.09) | | ve05.05) | |Ua08.09) | |(07.09) | ;
3 b : — — — : '
T 1 .
PEEE i
REEeR] ;
| l I [ I
54—
O . (®)
4 = 1 = [ma6)

Us0m.00) | Uo7, 09| | Ua(68,07)1 | | U (08,081 Us(m16,6)

b

Us(m16,6)

%
y

Vi for V in BPQM for bit 1 for U in BPQM for bit 1
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BPQM Performance for the 5-bit Code

Optimal: Joint Helstrom msmt. to distinguish the 8 codewords [YKL75]

1

0.9 B 1

e e o ©°
> o o N

Block Error Probability

o
w

o
N}

--- Sim: BP Block Error Rate
----- Sim: Codeword ML Block Error Rate
0.1} -%-Sim: BPQM Block Error Rate

—— Theory: Codeword Helstrom Limit
104 10-3 1072 107! 10° 101
Mean photon number / mode (N)

Mean photon number per mode N: F(W) = cos? § = e~*N [GW12]
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Summary and Open Questions

@ BP: Performs local inference over locally induced channels

e BPQM: Locally defined algorithm based on generalized channel
convolutions; passes qubits as messages on the factor graph

o BPQM appears to be quantum optimal for the 5-bit code
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Summary and Open Questions

@ BP: Performs local inference over locally induced channels

e BPQM: Locally defined algorithm based on generalized channel
convolutions; passes qubits as messages on the factor graph

o BPQM appears to be quantum optimal for the 5-bit code
@ Prove BPQM optimality for codes with tree factor graphs?
@ Does the quantum advantage persist under current gate fidelities?

@ BP aims to compute posterior marginals, but goal of BPQM remains
unclear since quantum “posteriors” are ill-defined
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Thank you!

LCS Algorithm: https://arxiv.org/abs/1907.00310
Code at https://github.com/nrenga/symplectic-arxiv18a

QFD Gates: https://arxiv.org/abs/1902.04022
CSS-T Codes: https://arxiv.org/abs/1910.09333

Kerdock 2-Design: https://arxiv.org/abs/1904.07842
Code at https://github.com/nrenga/symplectic-arxiv18a

BPQM: https://arxiv.org/abs/2003.04356
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