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Quantum Technologies Today

Courtesy (clockwise from top-left): D-Wave, IBM, Google, IonQ
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Recent Exciting Result
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Theme of the Dissertation

Quantum technologies promise significant advances in several practical
applications, but the hardware remains noisy

Question: What prominent applications and how to tackle noise?

Here we consider two applications:

Computing: Classical coding in dual bases; borrowed decoders

Communications: Polar codes for classical-quantum channels

This Talk

Further strengthening the bridge to classical coding theory
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Contributions via Classical Coding

Computing: Classical coding in dual bases ⇒ quantum error
correction is even possible; classical decoders can be borrowed

New classical coding problem under quantum fault-tolerance

Classical codes for quantum unitary 2-designs in benchmarking

Communications: Classical polar codes for classical-input
quantum-output channels; decoder infeasible in practice

Borrow belief-propagation algorithm with a quantum twist

Optimality, new application for photonic quantum computing
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Overview

1 Synthesizing Logical Operators for Stabilizer Codes
Motivation and Strategy
Logical Clifford Synthesis (LCS)
Quadratic Form Diagonal (QFD) Gates
Stabilizer Codes Matched to QFD Gates

2 Classical Communications over Pure-State Channels
Introduction and Motivation
Classical Belief-Propagation (BP)
Belief-Propagation with Quantum Messages (BPQM)

Narayanan Rengaswamy (Duke) Classical Coding for Quantum Applications Ph.D. Defense: March 18, 2020 5 / 40



Overview

1 Synthesizing Logical Operators for Stabilizer Codes
Motivation and Strategy
Logical Clifford Synthesis (LCS)
Quadratic Form Diagonal (QFD) Gates
Stabilizer Codes Matched to QFD Gates

2 Classical Communications over Pure-State Channels
Introduction and Motivation
Classical Belief-Propagation (BP)
Belief-Propagation with Quantum Messages (BPQM)

Narayanan Rengaswamy (Duke) Classical Coding for Quantum Applications Ph.D. Defense: March 18, 2020 5 / 40



Goal: Logical Operations from Physical Gates

QECC: Quantum Error Correcting Code

Information |x〉L

|x̃〉L

|ψx〉 |ψx̃〉

logical operation

[[n, k, d ]]
QECC

encode

relevant physical operation

[[n, k , d ]]
QECC
decode

Need to
translate
for the

[[n, k , d ]]
QECC

What QECC structure is required so that
the physical application of certain gates preserves the code subspace?
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Line of Thought

What QECC structure is required so that
the physical application of certain gates preserves the code subspace?

Key Idea

Pauli operators form an orthonormal basis for all operators!

Understand action of those gates on Pauli operators

Use the action to study effect on quantum error correcting codes

Finally, restrict to gates that are reliable in the lab
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In this talk . . .

1 Synthesizing Logical Operators for Stabilizer Codes
Motivation and Strategy
Logical Clifford Synthesis (LCS)
Quadratic Form Diagonal (QFD) Gates
Stabilizer Codes Matched to QFD Gates

2 Classical Communications over Pure-State Channels
Introduction and Motivation
Classical Belief-Propagation (BP)
Belief-Propagation with Quantum Messages (BPQM)
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Pure (Quantum) States

Qubit: Mathematically, it is a 2-dimensional vector space over C

Pure state: |ψ〉 = α |0〉+ β |1〉 , with α, β ∈ C and |α|2 + |β|2 = 1

Example (n = 2 qubits) : |0〉 ⊗ |1〉 =

[
1
0

]
⊗
[

0
1

]
=


0
1
0
0

 = |01〉

|1〉 ⊗ |0〉 =

[
0
1

]
⊗
[

1
0

]
=


0
0
1
0

 = |10〉

Pure state (n qubits): |φ〉 =
∑

v∈Fn
2
αv |v〉, αv ∈ C,

∑
v∈Fn

2
|αv |2 = 1
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Heisenberg-Weyl (or Pauli) Group HWN

Pure state (n qubits): |φ〉 =
∑

v∈Fn
2
αv |v〉, αv ∈ C,

∑
v∈Fn

2
|αv |2 = 1

HW2 := 〈ıκI ,X ,Z ,Y | ı :=
√
−1, κ ∈ Z4〉, I ,X ,Y ,Z ∈ C2×2

Bit-Flip : X |0〉 = |1〉 , X |1〉 = |0〉
Phase-Flip : Z |0〉 = |0〉 , Z |1〉 = − |1〉

Bit-Phase Flip : Y := ı · XZ , XZ = −ZX

For n Qubits: HWN := Kronecker products of n HW2 matrices (N = 2n)

Example (n = 3): (X ⊗ Z ⊗ Y )(|0〉 ⊗ |1〉 ⊗ |1〉) = |1〉 ⊗ (− |1〉)⊗ (−ı |0〉)

Important Fact

Pauli operators form an orthonormal basis for all N × N matrices
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Pauli Group, Clifford Group and Symplectic Matrices

Heisenberg-Weyl Group HWN := {ıκE (a, b) : a, b ∈ Fn
2, κ ∈ Z4}

E (a, b), a, b ∈ Fn
2 : X ⊗ Z ⊗ Y︸ ︷︷ ︸

n=3 qubits

= E ( 1 0 1︸︷︷︸
a

, 0 1 1︸︷︷︸
b

)
a = 1 0 1
b = 0 1 1

E (a, b) = X1 Z2 Y3

Symplectic Inner Product: 〈[a, b], [c , d ]〉s := [a, b] Ω [c , d ]T ,Ω :=

[
0 In
In 0

]

Clifford Group: All unitaries that map Paulis to Paulis under conjugation

Symplectic Matrices: If g ∈ CliffN (Cliffords on n = log2 N qubits) then

g E (a, b) g † = ±E ([a, b]Fg ) , where FgΩFT
g = Ω

Fg ∈ F2n×2n
2 is symplectic: preserves the symplectic inner product
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Two-Qubit Clifford: The Controlled-Z (CZ) Gate

g = CZ =


1

1
1
−1

 ,

Fg =

[
I2 Bg

0 I2

]
=


1 0 0 1
0 1 1 0

1 0
0 1



Symplectic Representation: gE (a, b)g † = ±E ([a, b]Fg )

g(X ⊗ I )g †

= gE (10, 00)g †

= E ([10, 00]Fg )

= E (10, 01)

= X ⊗ Z

(or) CZ(X ⊗ I ) = (X ⊗ Z )CZ
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Stabilizer Codes (N = 2n)

r -dimensional Stabilizer: Generated by r commuting Pauli operators:

S = 〈εiE (ai , bi ) ; i = 1, . . . , r〉, εi ∈ {±1}, −IN /∈ S

[[n, k = n − r , d ]] Stabilizer Code: The 2k dimensional subspace, V (S),
jointly fixed by all elements of S

V (S) :=
{
|ψ〉 ∈ CN : g |ψ〉 = |ψ〉 for all g ∈ S

}
Example:

[[6, 4, 2]] CSS Code: S := 〈X⊗6 = E (a, 0),Z⊗6 = E (0, a)〉, a := [ 1 1 1 1 1 1 ]

Generator Matrix: GS =

[
0 0 0 0 0 0 1 1 1 1 1 1

1 1 1 1 1 1 0 0 0 0 0 0

]

Narayanan Rengaswamy (Duke) Classical Coding for Quantum Applications Ph.D. Defense: March 18, 2020 11 / 40



Universal Quantum Computation

Goal: Implement arbitrary unitary operations on the k encoded qubits

Break-it-down: Need to implement all Clifford gates and at least
one non-Clifford gate on the k logical qubits

Starting Point

Algorithm for implementing any logical Clifford gate on any stabilizer code

Understand action of Clifford gates on Pauli operators

Use the action to study effect on quantum error correcting codes
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Logical Clifford Synthesis (LCS)

Synthesis of CZL
12 for [[6, 4, 2]] Code

LCS
Algorithm

Stabilizer

S = 〈X⊗6,Z⊗6〉
= 〈E (1, 0),E (0, 1)〉

Logical Pauli Operators

X̄j = X1Xj+1 = E (e1 + e j+1, 0)

Z̄j = Zj+1Z6 = E (0, e j+1 + e6)

(j = 1, 2, 3, 4)

Logical Clifford
gL = CZL

12

All∗ circuits ḡ ∈ Cliff26

that realize gL and fix S
(stabilizer freedom ignored)
∗ up to an equivalence class

Implementation: https://github.com/nrenga/symplectic-arxiv18a

Paper: https://arxiv.org/abs/1907.00310
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Kerdock (Logical) Unitary 2-Design

2-Design: Unitary ensemble, matches Haar measure up to second moment

Kerdock Set PK(n): A specific collection of N = 2n symmetric matrices

Kerdock Code K (n): Each (classical) codeword cP,w ,κ ∈ ZN
4 is indexed by

P ∈ PK(n),w ∈ Fn
2, and κ ∈ Z4; so, totally 22n+2 codewords

Obtain graph states from all cP,w ,κ by mapping Z4 7→ {1, ı,−1,−ı} !

Main Result

The symmetry group of the graph states produces a unitary 2-design

Combining with the LCS algorithm produces a logical unitary 2-design!
See https://arxiv.org/abs/1904.07842 for details
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LCS: Exploit Action on Pauli Operators

Main Ideas in LCS: Use ḡ E (a, b) ḡ † = ±E ([a, b]Fḡ )

Implied logical action: gLX L
j (gL)†, gLZL

j (gL)† ⇒ ḡ X̄j ḡ
†, ḡ Z̄j ḡ

†

ḡ ∈ CliffN must map stabilizers to stabilizers under conjugation

Translate conjugation relations into symplectic constraints on Fḡ

Issues in generalizing to non-Clifford gates:

Translating logical non-Cliffords to physical non-Cliffords is hard:
there is no clear symplectic connection

Physical operation is not Clifford ⇒ does not necessarily map
stabilizers to stabilizers under conjugation
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Gates for Universal Computation

CliffN = 〈H,P,CZ or CNOT (on all qubits)〉 ←− Not universal!

Gate Unitary Matrix Action on Paulis Symplectic Matrix

Hadamard H := 1√
2

[
1 1
1 −1

]
HXH† = Z

HZH† = X
FH =

[
0 1
1 0

]

Phase P :=

[
1 0
0 ı

]
=
√
Z

PXP† = Y

PZP† = Z
FP =

[
1 1
0 1

]

Phase (P),
Ctrl-Z (CZ)

tR :=
∑
v∈Fn

2

ıvRv
T |v〉 〈v |

(vRvT computed over Z)

CZ: Xa 7→ XaZb

Za 7→ Za

TR =

[
In R
0 In

]
with R symmetric

T T :=

[
1 0
0 eıπ/4

]
=
√
P

TXT † =
X + Y√

2

TZT † = Z

?

Narayanan Rengaswamy (Duke) Classical Coding for Quantum Applications Ph.D. Defense: March 18, 2020 16 / 40



Gates for Universal Computation

CliffN = 〈H,P,CZ or CNOT (on all qubits)〉 ←− Not universal!

Gate Unitary Matrix Action on Paulis Symplectic Matrix

Hadamard H := 1√
2

[
1 1
1 −1

]
HXH† = Z

HZH† = X
FH =

[
0 1
1 0

]

Phase P :=

[
1 0
0 ı

]
=
√
Z

PXP† = Y

PZP† = Z
FP =

[
1 1
0 1

]

Phase (P),
Ctrl-Z (CZ)

tR :=
∑
v∈Fn

2

ıvRv
T |v〉 〈v |

(vRvT computed over Z)

CZ: Xa 7→ XaZb

Za 7→ Za

TR =

[
In R
0 In

]
with R symmetric

T T :=

[
1 0
0 eıπ/4

]
=
√
P

TXT † =
X + Y√

2

TZT † = Z

?

Narayanan Rengaswamy (Duke) Classical Coding for Quantum Applications Ph.D. Defense: March 18, 2020 16 / 40



Quadratic Form Diagonal (QFD) Gates

S.X. Cui, D. Gottesman and A. Krishna, Phys. Rev. A, 2017
If U ∈ C(`) is diagonal, then all entries are 2`-th roots of unity.

C(1) = HWN

C(2) : tR =
∑

v∈Fn
2
ıvRv

T |v〉 〈v |

C(`) : τ
(`)
R =

∑
v∈Fn

2
ξvRv

T |v〉 〈v |

R is n × n symmetric
with entries in Z2

R is n × n symmetric
with entries in Z2` ,
ξ = exp

(
2πı
2`

)

Examples:

P ∈ C(2) ↔ R = [ 1 ] over Z4

T ∈ C(3) ↔ R = [ 1 ] over Z8

CZ = diag [1, 1, 1,−1] ∈ C(2)

↔ R =

[
0 1
1 0

]
over Z4

CP = diag [1, 1, 1, ı] ∈ C(3)

↔ R =

[
0 1
1 0

]
over Z8
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Quadratic Form Diagonal (QFD) Gates

S.X. Cui, D. Gottesman and A. Krishna, Phys. Rev. A, 2017
If U ∈ C(`) is diagonal, then all entries are 2`-th roots of unity.

C(1) = HWN

C(2) : tR =
∑

v∈Fn
2
ıvRv

T |v〉 〈v |

C(`) : τ
(`)
R =

∑
v∈Fn

2
ξvRv

T |v〉 〈v |

R is n × n symmetric
with entries in Z2

R is n × n symmetric
with entries in Z2` ,
ξ = exp

(
2πı
2`

)
Examples:

P ∈ C(2) ↔ R = [ 1 ] over Z4

T ∈ C(3) ↔ R = [ 1 ] over Z8
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Diagonal Recursion for QFD Gates

Recollect: Clifford g acts as g E (a, b) g † = ±E ([a, b]Fg ), Fg symplectic

How do QFD gates act on Pauli matrices under conjugation?

τ
(`)
R E (a, b)

(
τ

(`)
R

)†
= φ(R, a, b, `) · E

(
[a, b]

[
In R
0 In

])
· τ (`−1)

R̃(R,a,`)

φ(R, a, b, `) : Deterministic global phase

R̃(R, a, `) : New symmetric matrix with entries in Z2`−1

All 1- and 2-local diagonal gates in C(`) are QFD for any ` ≥ 1
Mølmer-Sørensen gates MS( π

2`
) are QFD up to Hadamards

For details see: https://arxiv.org/abs/1902.04022
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Universal Quantum Computation

Goal: Implement arbitrary unitary operations on the k encoded qubits

Break-it-down: Need to implement all Clifford gates and at least
one non-Clifford gate on the k logical qubits

Synthesizing logical non-Cliffords is hard

First explore how physical non-Clifford gates affect the code subspace

Understand action of non-Clifford gates on Pauli operators

Use the action to study effect on quantum error correcting codes
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LCS: Exploit Action on Pauli Operators

Main Ideas in LCS:

Implied logical action: gLX L
j (gL)†, gLZL

j (gL)† ⇒ ḡ X̄j ḡ
†, ḡ Z̄j ḡ

†

ḡ ∈ CliffN must map stabilizers to stabilizers under conjugation

Translate conjugation relations into symplectic constraints on Fḡ

Issues in generalizing to C(`), ` > 2:

Translating logical non-Cliffords to physical non-Cliffords is hard:
there is no clear symplectic connection.

QFD Gates!

Physical operation is not Clifford ⇒ does not necessarily map
stabilizers to stabilizers.

Preserve projector onto code subspace!
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Reverse LCS Strategy for Physical T Gates

QECC: Quantum Error Correcting Code

|x〉L |x̃〉L

|ψx〉 |ψx̃〉

logical operation

[[n, k , d ]]
QECC

encode

relevant physical operation

[[n, k , d ]]
QECC
decode

LCS

Need to
translate
for the

[[n, k, d ]]
QECC

What stabilizer structure is required so that
the physical application of T gates preserves the code subspace?
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Transversal T as a Logical Operator

Question: When is transversal T a logical operator for a stabilizer code?
What is the induced logical operation?

Stabilizer: S = 〈εiE (ai , bi ) ; i = 1, 2, . . . , r〉, εi ∈ {±1}

Code Projector: Πs =
∏r

i=1

IN + εiE (ai , bi )

2
=

1

2r
∑

a,b∈S εa,bE (a, b)

Calculation using QFD recursion [ hard for general QFD! ]

T⊗nE (a, b)
(
T⊗n

)†
=

1

2wtH(a)/2

∑
y�a

(−1)by
T
E (a, b ⊕ y)

T⊗n is a logical operator iff T⊗nΠS(T⊗n)† = ΠS : [ also hard in general! ]

1

2r

∑
a,b∈S

εa,b

2wtH(a)/2

∑
y�a

(−1)by
T
E (a, b ⊕ y) =

1

2r

∑
a,b∈S

εa,bE (a, b)
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CSS-T Codes and Two Corollaries

CSS-T Codes: Pair (C1,C2) of codes satisfying C2 ⊂ C1 and the following:

1 All codewords x ∈ C2 have even Hamming weight wH(x).

2 For each x ∈ C2, C⊥1 consists of a dimension wH(x)/2 self-dual code
Zx supported on x (i.e., Zx is essentially a [wH(x),wH(x)/2] code).

This yields a quantum code with parameters [[n, k1 − k2, d ≥ min(d1, d
⊥
2 )]].

Two Corollaries: (Non-degenerate ⇒ each stabilizer has weight ≥ d)

1 Triorthogonal codes form the only CSS family with T⊗n ≡ T̄⊗k .

2 For each [[n, k , d ]] non-degenerate stabilizer code that supports
transversal T , there is an [[n, k , d ]] CSS-T code that does too.
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Classical Coding Problem

CSS-T Codes: Pair (C1,C2) of codes satisfying C2 ⊂ C1 and the following:

1 All codewords x ∈ C2 have even Hamming weight wH(x).

2 For each x ∈ C2, C⊥1 consists of a dimension wH(x)/2 self-dual code
Zx supported on x (i.e., Zx is essentially a [wH(x),wH(x)/2] code).

This yields a quantum code with parameters [[n, k1 − k2, d ≥ min(d1, d
⊥
2 )]].

Open Problem

A CSS-T family with
(k1 − k2)

n
= Ω(1) and

d

n
= Ω(1)

Would imply constant overhead magic state distillation!
[
γ = log(n/k)

log d

]
(see arXiv:1910.09333, or arXiv:2001.04887 for shorter version)
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Summary and Future Work

Reviewed the Logical Clifford Synthesis (LCS) algorithm

Characterized QFD gates in the Clifford hierarchy

All 1- and 2-local diagonal gates in the hierarchy are QFD

Rigorously derived their action on Pauli matrices by conjugation

Used QFD framework to construct codes matched to T gates

Triorthogonal codes form the only CSS family with T⊗n ≡ T̄⊗k

CSS-T optimal for T⊗n among non-degenerate stabilizer codes

Paper: Extensions to finer angle Z -rotations and Reed-Muller codes

Use our recipe to find codes supporting any reliable QFD gate?

Key Takeaway

Expressing unitaries in the Pauli basis seems like an under-utilized trick
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Message Passing Algorithms

To compute quantities related to problems defined on graphs

They work by passing messages between nodes of the graph

Belief-Propagation (BP)

A message passing algorithm to efficiently compute posterior marginal
distributions in statistical inference problems

BP exactly performs bit-wise (or variable-wise) maximum-a-posteriori
(bit-MAP) estimation when the underlying graph is a tree

When the graph has cycles, usually run BP for a fixed number of
iterations; it converges in many cases, e.g., LDPC codes
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Extending BP to the Quantum World

Belief-Propagation (BP): A message passing algorithm to efficiently
compute posterior marginal distributions in statistical inference problems

How to define BP so that it passes quantum messages?

Why do we care? Might provide significant advantages in classical
communications over quantum channels

[Ren17]: A BP algorithm that passes qubits (and classical bits) as
messages; helps decode binary linear codes (with tree factor graphs)
on pure-state channels – BP with Quantum Messages (BPQM)

This Talk

Description, performance, of BPQM with a 5-bit tree code as example
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Binary Linear Codes and Factor Graphs

An [n, k , d ] code C can be defined by a binary parity-check matrix H as:

C := {x ∈ {0, 1}n : HxT = 0T , H ∈ {0, 1}(n−k)×n}

It encodes k message bits into n code bits, the minimum Hamming weight
of any codeword x ∈ C is d . Running Example: [5, 3, 2] code defined by

W1

x1

c1

x2

W2

x3

W3

c2

x4

W4

x5

W5

Wi ≡Wi (yi |xi ) := P[Yi = yi |Xi = xi ] : Channel

H =

( x1 x2 x3 x4 x5

c1 1 1 1 0 0
c2 1 0 0 1 1

)
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Maximum-a-Posteriori (MAP) Decoding

Problem: Transmit codeword x ∈ C through W n, receive vector y ∈ Yn,
optimally estimate the sent codeword x̂ ∈ C given observation y

p(x |y) =
p(y |x) · p(x)∑

x∈{0,1}5 p(y |x) · p(x)

=

∏5
k=1 W (yk |xk) · 1

|C|I(x ∈ C)

p(y)

∝
5∏

k=1

W (yk |xk) · [I(x1 ⊕ x2 ⊕ x3 = 0) I(x1 ⊕ x4 ⊕ x5 = 0)]

= W (y1|x1) · [I(x1 ⊕ x2 ⊕ x3 = 0)W (y2|x2)W (y3|x3)]

· [I(x1 ⊕ x4 ⊕ x5 = 0)W (y4|x4)W (y5|x5)] ,

x̂MAP:= argmax
x∈{0,1}5

p(x |y)←− Block-MAP

H =

( x1 x2 x3 x4 x5

c1 1 1 1 0 0
c2 1 0 0 1 1

)
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Bit-MAP and Belief-Propagation (BP)

Block-MAP is optimal but has exponentially growing complexity in k
Bit-MAP marginalizes the joint posterior and makes a decision bit-wise

W1

x1

c1

x2

W2

x3

W3

c2

x4

W4

x5

W5

BP computes “local beliefs” as messages and passes
between nodes to realize bit-MAP on tree graphs

Decode bit 1 as:

x̂1
MAP := argmax

x1∈{0,1}

∑
x2,x3,x4,x5∈{0,1}4

p(x |y)

= argmax
x1∈{0,1}

{
W (y1|x1) ·

 ∑
x2,x3∈{0,1}2

I(x1 ⊕ x2 ⊕ x3 = 0)W (y2|x2)W (y3|x3)


·

 ∑
x4,x5∈{0,1}2

I(x1 ⊕ x4 ⊕ x5 = 0)W (y4|x4)W (y5|x5)

}
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Bit-MAP marginalizes the joint posterior and makes a decision bit-wise

W1

x1

c1

x2

W2

x3

W3

c2

x4

W4

x5

W5

BP computes “local beliefs” as messages and passes
between nodes to realize bit-MAP on tree graphs

Decode bit 1 as:

x̂1
MAP := argmax

x1∈{0,1}

∑
x2,x3,x4,x5∈{0,1}4

p(x |y)

= argmax
x1∈{0,1}

{
W (y1|x1) ·

 ∑
x2,x3∈{0,1}2

I(x1 ⊕ x2 ⊕ x3 = 0)W (y2|x2)W (y3|x3)


·

 ∑
x4,x5∈{0,1}2

I(x1 ⊕ x4 ⊕ x5 = 0)W (y4|x4)W (y5|x5)

}
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Induced Channels in BP

Variable Node Convolution: The transition probabilities of this channel are

[W ~W ′](y , z |x) = W (y |x) ·W ′(z |x , y) = W (y |x) ·W ′(z |x)

x

c1 c2

· · · · · ·

≡

x

W W ′

y z

≡

x

W ~W ′

w w = (y , z)

At x1 −→W (y1|x1) ·

 ∑
x2,x3∈{0,1}2

I(x1 ⊕ x2 ⊕ x3 = 0)W (y2|x2)W (y3|x3)


·

 ∑
x4,x5∈{0,1}2

I(x1 ⊕ x4 ⊕ x5 = 0)W (y4|x4)W (y5|x5)
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Induced Channels in BP

Factor Node Convolution: The transition probabilities of this channel are

[W � W ′](y , z |x) =
1

2
W (y |u = x) ·W ′(z |v = 0) +

1

2
W (y |u = x ⊕ 1) ·W ′(z |v = 1)

=
1

2
W (y |x) ·W ′(z |0) +

1

2
W (y |x ⊕ 1) ·W ′(z |1)

x

c

u v

W W ′

y z

≡

x

W � W ′

w w = (y , z)

∑
x2,x3∈{0,1}2

I(x1 ⊕ x2 ⊕ x3 = 0)W (y2|x2)W (y3|x3) ←− at c1

= W (y2|x2 = x1)W (y3|x3 = 0) + W (y2|x2 = x1 ⊕ 1)W (y3|x3 = 1)

∝ [W � W ](y2, y3|x1),
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Generalized Channel Convolutions [Ren17; Ren18]

Classical Channels W (y |x) := P[Y = y |X = x ]:

[W ~W ′](y , z |x) := W (y |x) ·W ′(z |x),

[W � W ′](y , z |x) :=
1

2
W (y |x) ·W ′(z |0) +

1

2
W (y |x ⊕ 1) ·W ′(z |1)

Classical-Quantum Channels W (x), x ∈ {0, 1}:

[W ~W ′](x) := W (x)⊗W ′(x),

[W � W ′](x) :=
1

2
W (x)⊗W ′(0) +

1

2
W (x ⊕ 1)⊗W ′(1)

How do we generalize BP w.r.t. these channel convolutions?
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Pure-State CQ Channel

Defined for classical inputs x ∈ {0, 1} as

W (x) := 〈x |0〉 · |θ〉 〈θ|+ 〈x |1〉 · |−θ〉 〈−θ|
= |(−1)xθ〉 〈(−1)xθ| ,

|±θ〉 := cos
θ

2
|0〉 ± sin

θ

2
|1〉

Fidelity of the channel: F (W ) := | 〈θ| − θ〉 |2 = cos2 θ

Let q := P[x = 0]. Then the joint density matrix is

ρXB := q · |0〉 〈0|X ⊗ |θ〉 〈θ|B + (1− q) · |1〉 〈1|X ⊗ |−θ〉 〈−θ|B .

The capacity is attained at q = 1/2 and is given by [GW12]

C∞(W ) = H

(
1

2
· |θ〉 〈θ|B +

1

2
· |−θ〉 〈−θ|B

)
= h2

(
1 +

√
F (W )

2

)
.

Narayanan Rengaswamy (Duke) Classical Coding for Quantum Applications Ph.D. Defense: March 18, 2020 34 / 40



Pure-State CQ Channel

Defined for classical inputs x ∈ {0, 1} as

W (x) := 〈x |0〉 · |θ〉 〈θ|+ 〈x |1〉 · |−θ〉 〈−θ|
= |(−1)xθ〉 〈(−1)xθ| ,

|±θ〉 := cos
θ

2
|0〉 ± sin

θ

2
|1〉

Fidelity of the channel: F (W ) := | 〈θ| − θ〉 |2 = cos2 θ

Let q := P[x = 0]. Then the joint density matrix is

ρXB := q · |0〉 〈0|X ⊗ |θ〉 〈θ|B + (1− q) · |1〉 〈1|X ⊗ |−θ〉 〈−θ|B .

The capacity is attained at q = 1/2 and is given by [GW12]

C∞(W ) = H

(
1

2
· |θ〉 〈θ|B +

1

2
· |−θ〉 〈−θ|B

)
= h2

(
1 +

√
F (W )

2

)
.

Narayanan Rengaswamy (Duke) Classical Coding for Quantum Applications Ph.D. Defense: March 18, 2020 34 / 40



Helstrom Measurement [Hel69; HLG70]

An optimal measurement to distinguish between any two states ρ0, ρ1. It
is defined by the projectors {ΠHel, I− ΠHel}:

ΠHel :=
∑

i : λi≥0

|i〉 〈i | , (ρ0 − ρ1) |i〉 = λi |i〉 .

For the pure state channel, for any θ, easy to see that

ρ0 − ρ1 = |θ〉 〈θ| − |−θ〉 〈−θ| = sin θ · X ,

so the Helstrom measurement is projecting onto the Pauli X basis, i.e., the
projectors are {|+〉 〈+| , |−〉 〈−|}.

Optimal error probability: ([Dol73])

Pmin =
1

2
− 1

4
‖ρ0 − ρ1‖1 =

1−
√

1− F (W )

2
=

1− sin θ

2
.

Hence, the Helstrom measurement induces the channel BSC(Pmin).
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Optimal Processing for Pure-State Channel

Capacity under symbol-by-symbol Helstrom Measurement:

C1(W ) = 1− h2(Pmin) = 1− h2

(
1−

√
1− F (W )

2

)
� C∞(W ).

Ultimate Holevo Capacity C∞(W ) requires collective measurements!

Classical-Quantum Polar Codes close this gap but the quantum successive
cancellation decoder is infeasible to realize in practice [WG13].

1. Is it possible to define a quantum BP decoder that closes this gap?

2. Given a code, how to define quantum BP for optimal block error rate?
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Generalized Channel Convolutions [Ren17; Ren18]

Classical Channels W (y |x) := P[Y = y |X = x ]:

[W ~W ′](y , z |x) := W (y |x) ·W ′(z |x),

[W � W ′](y , z |x) :=
1

2
W (y |x) ·W ′(z |0) +

1

2
W (y |x ⊕ 1) ·W ′(z |1)

Classical-Quantum Channels W (x), x ∈ {0, 1}:

[W ~W ′](x) := W (x)⊗W ′(x),

[W � W ′](x) :=
1

2
W (x)⊗W ′(0) +

1

2
W (x ⊕ 1)⊗W ′(1)

How do we generalize BP w.r.t. these channel convolutions?
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BPQM on the 5-bit Code

BPQM Node Operations:

U~(θ, θ′)
(
[W ~W ′](x)

)
U~(θ, θ′)† =

∣∣±θ~〉 〈±θ~∣∣⊗ |0〉 〈0| ,
U�
(
[W � W ′](x)

)
U†� =

∑
j∈{0,1}

pj

∣∣∣±θ�
j

〉〈
±θ�

j

∣∣∣⊗ |j〉 〈j |
Apply BPQM operations to decode bit x1 of the code:

W1

x1

c1

x2

W2

x3

W3

c2

x4

W4

x5

W5

{0, 1}
1

V

H

2

U
3

4

5

(e)(a) (b) (d)(c)
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Full BPQM Circuit for the 5-bit Code
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BPQM Performance for the 5-bit Code

Optimal: Joint Helstrom msmt. to distinguish the 8 codewords [YKL75]

10−4 10−3 10−2 10−1 100 101
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean photon number / mode (N)

B
lo

ck
E

rr
or

P
ro

b
ab

ili
ty

Sim: BP Block Error Rate
Sim: Codeword ML Block Error Rate
Sim: BPQM Block Error Rate
Theory: Codeword Helstrom Limit

Mean photon number per mode N: F (W ) = cos2 θ = e−4N [GW12]
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Summary and Open Questions

BP: Performs local inference over locally induced channels

BPQM: Locally defined algorithm based on generalized channel
convolutions; passes qubits as messages on the factor graph

BPQM appears to be quantum optimal for the 5-bit code

Prove BPQM optimality for codes with tree factor graphs?

Does the quantum advantage persist under current gate fidelities?

BP aims to compute posterior marginals, but goal of BPQM remains
unclear since quantum “posteriors” are ill-defined
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Thank you!

LCS Algorithm: https://arxiv.org/abs/1907.00310
Code at https://github.com/nrenga/symplectic-arxiv18a

QFD Gates: https://arxiv.org/abs/1902.04022

CSS-T Codes: https://arxiv.org/abs/1910.09333

Kerdock 2-Design: https://arxiv.org/abs/1904.07842
Code at https://github.com/nrenga/symplectic-arxiv18a

BPQM: https://arxiv.org/abs/2003.04356
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